• Shubham Rana

Germanium for Quantum Computing

On a fundamental level, computing systems rely on the ability to store and manipulate information represented and stored as a stream of electrical or optical pulses in the form of binary states 0 and 1. On the other hand, Quantum computers leverage quantum mechanical phenomena to manipulate information. To do this, they rely on quantum bits or qubits, which are typically subatomic particles such as electrons or photons. Companies use superconducting circuits cooled to temperatures colder than deep space to isolate the qubits in a controlled quantum state. The two-level system of a qubit exhibits quantum mechanics properties like ‘superposition’, and ‘entanglement’. An atom’s electrons decay and stay intact at the same time, and in the same way, Qubits can represent numerous possible combinations of 1 and 0 at the same time. This ability of the qubits to be simultaneous in multiple states is call